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Abstract. The necessary condition that a Stäckel–Killing tensor of valence two should be the
contracted product of a Killing–Yano tensor of valence two with itself is rederived for a Riemannian
manifold. This condition is applied to the generalized Euclidean Taub–NUT metrics which admit
a Kepler-type symmetry. It is shown that, in general, the Stäckel–Killing tensors involved in the
Runge–Lenz vector cannot be expressed as a product of Killing–Yano tensors. The only exception
is the original Taub–NUT metric.

1. Introduction

The Euclidean Taub–NUT metric is involved in many modern studies in physics. Hawking
[1] has suggested that the Euclidean Taub–NUT metric might give rise to the gravitational
analogue of the Yang–Mills instanton. In this case Einstein’s equations are satisfied with zero
cosmological constant and the manifold is R

4 with a boundary which is a twisted 3-sphere S3

possessing a distorted metric. The Kaluza–Klein monopole was obtained by embedding the
Taub–NUT gravitational instanton into five-dimensional Kaluza–Klein theory. On the other
hand, in the long-distance limit, neglecting radiation, the relative motion of two monopoles is
described by the geodesics of this space [2, 3].

From the symmetry viewpoint, the geodesic motion in Taub–NUT space admits a ‘hidden’
symmetry of the Kepler-type if a cyclic variable is removed [4–7]. In general the ‘hidden’
symmetries of the manifold manifest themselves as Stäckel–Killing tensors of valence r > 1
[8]. The conserved quantities along geodesics are homogeneous functions in momentum pµ

of degree r , and which commute with the Hamiltonian

H = 1
2g

µνpµpν (1)

in the sense of Poisson brackets.
In the Taub–NUT geometry there are four Killing–Yano tensors [9]. Three of these are

complex structure realizing the quaternionic algebra and the Taub–NUT manifold is hyper-
Kähler [5]. In addition to these three vector-like Killing–Yano tensors, there is a scalar one
which has a non-vanishing field strength and exists by virtue of the metric being of type D.

For the geodesic motions in the Taub–NUT space, the conserved vector analogous to the
Runge–Lenz vector of the Kepler-type problem is quadratic in 4-velocities, its components are
Stäckel–Killing tensors and they can be expressed as symmetrized products of Killing–Yano
tensors [5, 10–12].
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The Killing–Yano tensors play an important role in the models for relativistic spin- 1
2

particles involving anticommuting vectorial degrees of freedom, usually called the spinning
particles [13–16]. The configuration space of spinning particles (spinning space) is an
extension of an ordinary Riemannian manifold, parametrized by local coordinates {xµ}, to
a graded manifold parametrized by local coordinates {xµ,ψµ}, with the first set of variables
being Grassmann-even (commuting) and the second set Grassmann-odd (anticommuting). In
the spinning case the generalized Killing equations are more involved and new procedures
have been conceived [12, 15]. In particular, if the Killing tensors can be written in terms of
Killing–Yano tensors (and that is the case of the Taub–NUT space), the generalized Killing
equations can be solved explicitly in a simple, closed form.

Iwai and Katayama [17–20] extended the Taub–NUT metric so that it still admits a Kepler-
type symmetry. This class of metrics, of course, includes the original Taub–NUT metric.

The aim of this paper is to investigate whether the Stäckel–Killing tensors involved in the
conserved Runge–Lenz vector of the extended Taub–NUT metrics can also be expressed in
terms of Killing–Yano tensors.

The relationship between Killing tensors and Killing–Yano tensors has been investigated
with regard to the Lorentzian geometry used in general relativity [21, 22]. In the next section
we re-examine the condition that a Killing tensor of valence two should be the contracted
product of a Killing–Yano tensor of valence two with itself. The procedure is quite simple and
is specific for the Riemannian geometry appropriate to Euclidean Taub–NUT metrics.

In section 3 we show that, in general, the Killing tensors involved in the Runge–Lenz
vector cannot be expressed as a product of Killing–Yano tensors. The only exception is the
original Taub–NUT metric.

Our comments and concluding remarks are presented in section 4.

2. The relationship between Killing tensors and Killing–Yano tensors

We consider a four-dimensional Riemannian manifold M and a metric gµν(x) on M in local
coordinates xµ. We write the metric in terms of the local orthonormal vierbein frame eaµ

ds2 = gµν(x) dxµ dxν =
∑

a=0,1,2,3

(ea)2 (2)

where ea = eaµ dxµ. Greek indices µ, ν, . . . are raised and lowered with gµν or its inverse gµν ,
while Latin indices a, b, . . . are raised and lowered by the flat metric δab, a, b = 0, 1, 2, 3.
Vierbeins and inverse vierbeins convert between Latin and Greek indices when necessary.

The following two generalization of the Killing vector equation have become of interest
in physics [22].

(a) A tensor fµ1...µr
is called a Killing–Yano tensor of valence r if it is totally antisymmetric

and it satisfies the equation

fµ1...(µr ;λ) = 0. (3)

(b) A symmetric tensor field Kµ1...µr
is called a Stäckel–Killing tensor of valence r iff

K(µ1...µr ;λ) = 0. (4)

Let �2 be the space of 2-forms �2 := �2T ∗(R4 − {0}). We define self-dual and anti-
self-dual bases for �2 using the vierbein 1-forms ea [23]:

basis of �2
± =




λ1
± = e0 ∧ e1 ± e2 ∧ e3

λ2
± = e0 ∧ e2 ± e3 ∧ e1 ∗λi

± = ±λi
±

λ3
± = e0 ∧ e3 ± e1 ∧ e2.

(5)
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Letf be a Killing–Yano tensor of valence two and ∗f its dual. The symmetric combination
of f and ∗f is a self-dual 2-form

f + ∗f =
∑

i=1,2,3

yiλ
i
+ (6)

while their difference is an antiself-dual 2-form

f − ∗f =
∑

i=1,2,3

ziλ
i
−. (7)

An explicit evaluation shows that

(f + ∗f )2 = −
∑

i=1,2,3

(yi)
2 · 1l (8)

(f − ∗f )2 = −
∑

i=1,2,3

(zi)
2 · 1l (9)

where 1l is a 4 × 4 identity matrix.
Let us suppose that a Stäckel–Killing tensor Kµν can be written as the contracted product

of a Killing–Yano tensor fµν with itself:

Kµν = fµλ · f λ
ν = (f 2)µν µ, ν = 0, 1, 2, 3. (10)

We infer from the last equations that

K + 1
16

[∑
i

(
y2
i − z2

i

)]2

K−1 + 1
2

∑
i

(
y2
i + z2

i

) · 1l = 0. (11)

On the other hand, the Killing tensor K is symmetric and it can be diagonalized with the
aid of an orthogonal matrix. Its eigenvalues satisfy an equation of the second degree:

λ2
α + 1

2

∑
i

(
y2
i + z2

i

)
λα + 1

16

[∑
i

(
y2
i − z2

i

)]2

= 0 (12)

with at most two distinct roots.
In conclusion, a Stäckel–Killing tensor K which can be written as the square of a Killing–

Yano tensor has at the most two distinct eigenvalues.

3. Generalized Taub–NUT metrics

For a special choice of coordinates the generalized Euclidean Taub–NUT metric considered
by Iwai and Katayama [17–20] takes the form

ds2
G = f (r)[dr2 + r2 dθ2 + r2 sin2 θ dϕ2] + g(r)[dχ + cos θ dϕ]2 (13)

where r > 0 is the radial coordinate of R
4 − {0}, the angle variables (θ, ϕ, χ), (0 � θ <

π, 0 � ϕ < 2π, 0 � χ < 4π) parametrize the unit sphere S3, and f (r) and g(r) are arbitrary
functions of r .

We decompose the metric (13) into the orthogonal vierbein basis:

e0 = g(r)
1
2 (dχ + cos θ dϕ)

e1 = rf (r)
1
2 (sin χ dθ − sin θ cosχ dϕ)

e2 = rf (r)
1
2 (− cosχ dθ − sin θ sin χ dϕ)

e3 = f (r)
1
2 dr.

(14)
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Spaces with a metric of the above form have an isometry group SU(2) × U(1). The four
Killing vectors are

DA = R
µ

A ∂µ A = 0, 1, 2, 3 (15)

where

D0 = ∂

∂χ

D1 = − sin ϕ
∂

∂θ
− cosϕ cot θ

∂

∂ϕ
+

cosϕ

sin θ

∂

∂χ

D2 = cosϕ
∂

∂θ
− sin ϕ cot θ

∂

∂ϕ
+

sin ϕ

sin θ

∂

∂χ

D3 = ∂

∂ϕ
.

(16)

D0 which generates the U(1) of χ translations, commutes with the other Killing vectors.
In turn, the remaining three vectors, corresponding to the invariance of the metric (13) under
spatial rotations (A = 1, 2, 3), obey an SU(2) algebra with

[D1,D2] = −D3 etc. (17)

Let us consider geodesic flows of the generalized Taub–NUT metric which has the
Lagrangian L on the tangent bundle T (R4 − {0})

L = 1
2f (r)[ṙ2 + r2(θ̇2 + sin2 θ ϕ̇2)] + 1

2g(r)(χ̇ + cos θ ϕ̇)2 (18)

where (ṙ, θ̇ , ϕ̇, χ̇ , r, θ, ϕ, χ) denote coordinates in the tangent bundle. Since χ is a cyclic
variable

q = g(r)(θ̇ + cos θ ϕ̇) (19)

is a conserved quantity. This is known in the literature as the ‘relative electric charge’.
Taking into account this cyclic variable, the dynamical system for the geodesic flow on

T (R4 −{0}) can be reduced to a system on T (R3 −{0}). The reduced system admits manifest
rotational invariance, and hence has a conserved angular momentum

�J = �r × �p + q
�r
r

(20)

where �r denotes the 3-vector �r = (r, θ, ϕ) and �p = f (r)�̇r is the mechanical momentum.
If f (r) and g(r) are taken to be

f (r) = 4m + r

r
g(r) = 16m2r

4m + r
(21)

the metric ds2
G becomes the original Euclidean Taub–NUT metric. As observed in [5], the

Taub–NUT geometry also possesses four Killing–Yano tensors of valence two. The first three
are rather special: they are covariantly constant (with vanishing field strength)

fi = 8m(dχ + cos θ dϕ) ∧ dxi − εijk

(
1 +

4m

r

)
dxj ∧ dxk

Dµf
ν
iλ = 0 i, j, k = 1, 2, 3. (22)
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They are mutually anticommuting and square the minus unity:

fifj + fjfi = −2δij . (23)

Thus they are complex structures realizing the quaternion algebra. Indeed, the Taub–NUT
manifold defined by (13) and (21) is hyper-Kähler.

In addition to the above vector-like Killing–Yano tensors there also is a scalar one

fY = 8m(dχ + cos θ dϕ) ∧ dr + 4r(r + 2m)

(
1 +

r

4m

)
sin θ dθ ∧ dϕ (24)

which has a non-vanishing component of the field strength

fY rθ;ϕ = 2

(
1 +

r

4m

)
r sin θ. (25)

In the original Taub–NUT case there is a conserved vector analogous to the Runge–Lenz
vector of the Kepler-type problem:

�K = 1
2

�Kµνẋ
µẋν = �p × �j +

(
q2

4m
− 4mE

) �r
r

(26)

where the conserved energy E, from equation (1), is

E = �p2

2f (r)
+

q2

2g(r)
. (27)

The components Kiµν involved with the Runge–Lenz-type vector (26) are Killing tensors
and they can be expressed as symmetrized products of the Killing–Yano tensors fi (22) and
fY (24) [11, 12]:

Kiµν − 1

8m
(R0µRiν + R0νRiµ) = m

(
fYµλfi

λ
ν + fYνλfi

λ
µ

)
. (28)

Returning to the generalized Taub–NUT metric, in analogy with equation (26), Iwai and
Katayama [17–20] assumed that in addition to the angular momentum vector there exist a
conserved vector �S of the following form:

�S = �p × �J + κ
�r
r

(29)

with an unknown constant κ .
It was found that the metric (13) still admits a Kepler-type symmetry (29) if the functions

f (r) and g(r) take, respectively, the form

f (r) = a + br

r
g(r) = ar + br2

1 + cr + dr2
(30)

where a, b, c, d are constants. The constant κ involved in the Runge–Lenz vector (29) is

κ = −aE + 1
2cq

2. (31)

If ab > 0 and c2 − 4d < 0 or c > 0, d > 0, no singularity of the metric appears in
R

4 − {0}. On the other hand, if ab < 0 a manifest singularity appears at r = −a/b [18].
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It is straightforward to verify that the components of the vector �S are Stäckel–Killing
tensors in the extended Taub–NUT space (13) with the function f (r) and g(r) given by (30).
Moreover, the Poisson brackets between the components of �J and �S are [17]

{Ji, Jj } = εijkJk

{Ji, Sj } = εijkSk

{Si, Sj } = (d q2 − 2 b E)εijkJk

(32)

as is expected from the same relations known for the original Taub–NUT metric.
Our task is to investigate whether the components of the Runge–Lenz vector (29) can be

the contracted product of Killing–Yano tensors of valence two. For the model of equation (28)
from the original Taub–NUT case it is not required that a component Si of the Runge–Lenz
vector (29) be directly expressed as a symmetrized product of Killing–Yano tensors. Taking
into account that �S transforms as a vector under rotations generated by �J , equation (32),
the components Siµν can be combined with trivial Stäckel–Killing tensors of the form
(R0µRiν +R0νRiµ) to obtain the appropriate tensor which has to be decomposed into a product
of Killing–Yano tensors.

In order to use the results from the previous section, we shall write the symmetrized product
of two different Killing–Yano tensors f ′ and f ′′ as a contracted product of f ′ + f ′′ with itself,
extracting adequately the contribution of f ′2 and f ′′2. Since the generalized Taub–NUT space
(13) does not admit any other non-trivial Stäckel–Killing tensor besides the metric gµν and the
components Siµν of (29), f ′2 and f ′′2 should be connected with the scalar conserved quantities
E, �J 2, q2 through the tensors gµν,

∑
A=1,2,3 RAµRAν and R0µR0ν .

In conclusion we shall consider a general linear combination between a component Si of
the Runge–Lenz vector (29) and symmetrized pairs of Killing vectors of the form

Siab + α1

3∑
A=1

RAaRAb + α2R0aR0b + α3(R0aRib + RiaR0b) (33)

where αi are constants. We are looking for the conditions for the above tensor to be the
contracted product of a Killing–Yano tensor with itself. For this purpose we evaluate the
eigenvalues of the matrix (33) and we find that it has at most two distinct eigenvalues if and
only if

α1 + α2 = 0

α3 = − 1
4c (34)

d = 1
4c

2.

For example, if the above conditions are satisfied, the eigenvalues of the matrix (33) for
the third component S3 of the Runge–Lenz vector (29) are

λ1 = 1
2

(
br cos θ + (a + br)

(
rα1 +

√
1 + r2α2

1 + 2rα1 cos θ
))

(35)

with the eigenvectors

{
tan χ,

(
rα1 + cos θ +

√
1 + r2α2

1 + 2rα1 cos θ
)

cosec θ secχ, 0, 1
}

{(
(rα1 + cos θ −

√
1 + r2α2

1 + 2rα1 cos θ
)

cosec θ secχ,− tan χ, 1, 0
} (36)
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and

λ2 = 1
2

(
br cos θ + (a + br)

(
rα1 −

√
1 + r2α2

1 + 2rα1 cos θ
))

(37)

with the eigenvectors

{
tan χ,

(
rα1 + cos θ −

√
1 + r2α2

1 + 2rα1 cos θ
)

cosec θ secχ, 0, 1
}

{(
(rα1 + cos θ +

√
1 + r2α2

1 + 2rα1 cos θ
)

cosec θ secχ,− tan χ, 1, 0
}
.

(38)

Hence the constants involved in the functions f, g are constrained, restricting their
expressions accordingly. It is worth mentioning that if relation (34) between constants c

and d is satisfied, the metric is conformally self-dual or antiself-dual depending upon the sign
of the quantity 2 + cr [18]. More precisely, for the Weyl curvature tensor

Ci
jkl = Ri

jkl − 1
2 (δ

i
kRjl − δil Rjk + δ

j

l Rik − δ
j

kRil) + 1
6R(δikδjl − δil δjk) (39)

one can define a 2-form

Wij = 1
2

∑
k,l

Ci
jkle

k ∧ el. (40)

With respect to the basis (5) the representation matrix W of (40) takes the block-diagonal
form

W =
(

W + 0

0 W−

)
(41)

where W + and W− are 3 × 3 matrices representing the induced linear transformation of the
invariant subspaces �2

+ and �2
−, respectively. If the constants c and d satisfy (34), the extended

Taub–NUT metric (30) with 2 + cr > 0 is conformally self-dual and one has [18]

W + = c

2(a + br)(1 + cr/2)2
W0 W− = 0 (42)

where W0 is a diagonal matrix

W0 =




−1

−1

2


. (43)

For 2 + cr < 0, the metric is conformally antiself-dual and the expressions of W + and W− are
interchanged.

Finally, the condition stated for a Stäckel–Killing tensor to be written as the square of
a skew-symmetric tensor in the form (10) must be supplemented with equation (3), which
defines a Killing–Yano tensor. To verify this last condition we shall use the Newman–Penrose
formalism for Euclidean signature [24]. We introduce a tetrad which will be given as an
isotropic complex dyad defined by the vectors l, m together with their complex conjugates
subject to the normalization conditions

lµl̄
µ = 1 mµm̄

µ = 1 (44)

with all others vanishing and the metric is expressed in the form

ds2 = l ⊗ l̄ + l̄ ⊗ l + m ⊗ m̄ + m̄ ⊗ m. (45)
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For a Stäckel–Killing tensor K with two distinct eigenvalues one can choose the tetrad in
such a form that

Kµν = 2λ2
1l(µl̄ν) + 2λ2

2m(µm̄ν). (46)

The skew-symmetric tensor fµν which enters the decomposition (10) has the form

fµν = 2λ1l[µl̄ν] + 2λ2m[µm̄ν]. (47)

Again taking the example of the third component S3, the eigenvalues λ1 and λ2 are given
by (35) and (37) and the tetrad (44) can be inferred from the eigenvectors (36) and (38) through
a standard orthonormalization procedure. Finally, imposing equation (3), we find that (47) is
a Killing–Yano tensor only if

c = 2b

a
. (48)

With this constraint, together with (34), the extended metric (13) coincides, up to a constant
factor, with the original Taub–NUT metric on setting a/b = 4m. Note that in equations (35)–
(38) the constant α1 is not fixed. In fact, the product of two Killing–Yano tensors f ′ · f ′′ is
invariant under the rescaling f ′ → αf ′, f ′′ → 1

α
f ′′. Choosing adequately the normalization

of the Killing–Yano tensors, for α1 = − 1
4m we recover precisely the original Taub–NUT

decomposition (28) with f ′ = fi and f ′′ = fY normalized as in (22) and (24).

4. Concluding remarks

The aim of this paper is to show that the extensions of the Taub–NUT geometry do not admit
a Killing–Yano tensor, even if they possess Stäckel–Killing tensors.

This result is not unexpected. The conserved quantities Kiµν which enter equation (28)
are the components of the Runge–Lenz vector �K given in (26). In the original Taub–NUT case
these components Kiµν are related to the symmetrized products between the Killing–Yano
tensors fi (22) and fY (24). The three Killing–Yano tensors fi transform as vectors under
rotations generated by �J like the Runge–Lenz vector (32), while fY is a scalar.

The extended Taub–NUT metrics are not Ricci flat and, consequently, not hyper-Kähler.
On the other hand, the existence of the Killing–Yano tensorsfi is correlated to the hyper-Kähler,
self-dual structure of the metric.

The non-existence of the Killing–Yano tensors makes the study of ‘hidden’ symmetries
more laborious in models of relativistic particles with spin involving anticommuting vectorial
degrees of freedom. In general, the conserved quantities from the scalar case receive a spin
contribution involving an even number of Grassmann variables ψµ. For example, starting with
a Killing vector Kµ, the conserved quantity in the spinning case is

J (x, ẋ, ψ) = Kµẋµ + 1
2 iK[µ;ν]ψ

µψν. (49)

The first term in the right-hand side is the conserved quantity in the scalar case, while the last
term represents the contribution of the spin.

A ‘hidden’ symmetry is encapsulated in a Stäckel–Killing tensor of valence r > 1.
The generalized Killing equations on spinning spaces including a Stäckel–Killing tensor
are more involved. Unfortunately, it is not possible to write closed, analytic expressions
of the solutions of these equations using directly the components of the Stäckel–Killing
tensors. However, assuming that the Stäckel–Killing tensors can be written as symmetrized
products of pairs of Killing–Yano tensors, the evaluation of the spin corrections is feasible
[11, 12, 15, 16].
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If the Killing–Yano tensors are missing, to take up the question of the existence of extra
supersymmetries and the relation with the constants of motion we are forced to enlarge the
approach to Killing equations (3) and (4). In fact, in [15], supersymmetries are shown to
depend on the existence of a tensor field fµν satisfying equation (3) which will be referred
to as the f -symbol. The general conditions for constants of motion were derived, and it was
shown that one can have new supercharges which do not commute with the original supercharge
Q = ẋµψ

µ if one allows the f -symbols to have a symmetric part. It was shown that in this
case the antisymmetric part does not satisfy the Killing–Yano condition (3). We would like to
remark that the general conditions of [15] allow more possibilities than Killing–Yano tensors
for the construction of supercharges.

In summary, we believe that the relation between the f -symbols and the Killing–Yano
tensors could be fruitful and that it deserves further study. An analysis of the f -symbols in
the generalized Taub–NUT geometry is underway [25].
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